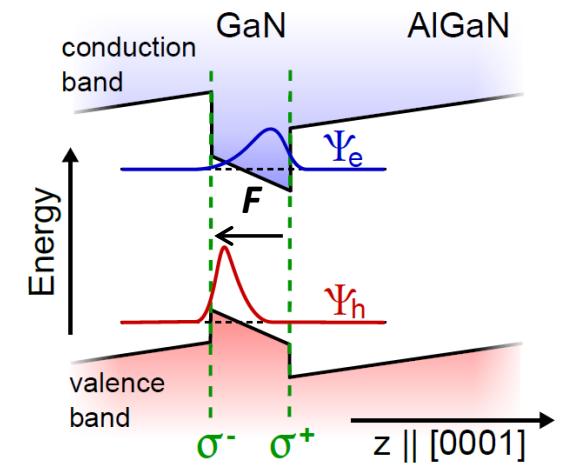


Lecture 4 – 12/03/2025

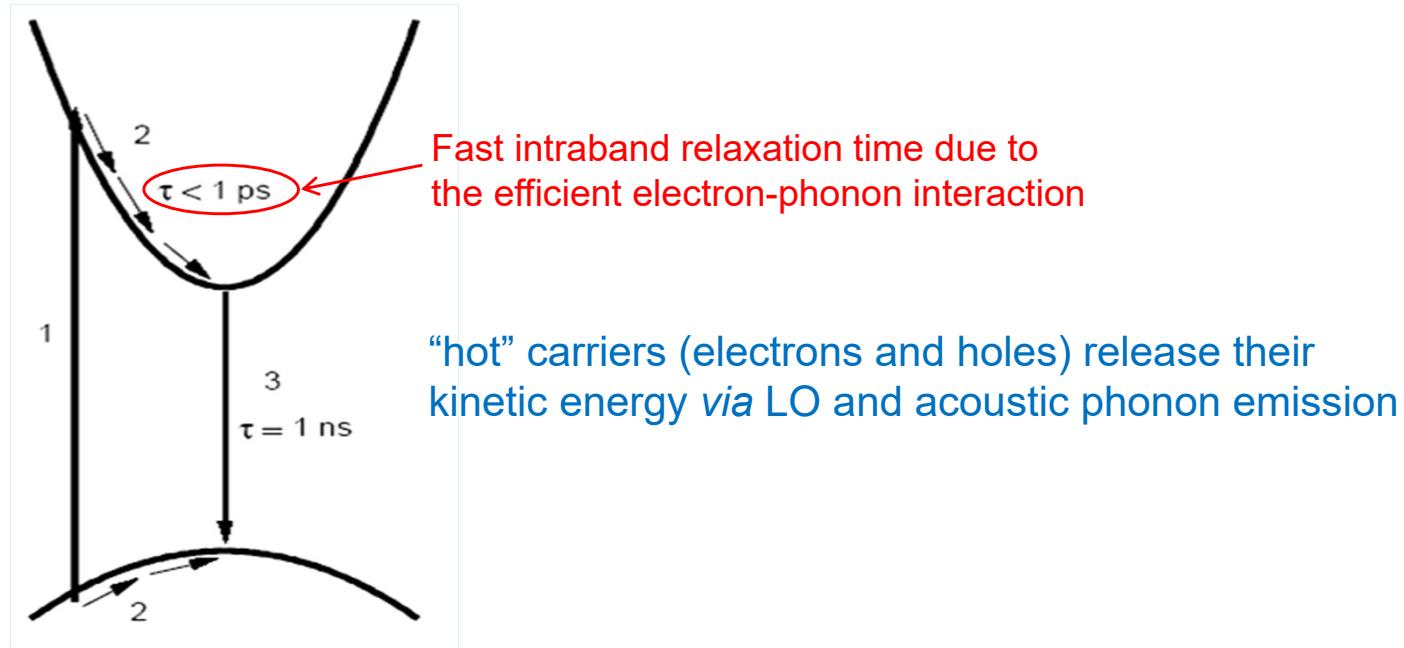
Quantum nanostructures

- Spontaneous emission: bulk vs quantum wells
- Quantum confined Stark effect



Spontaneous emission

Photoluminescence



Electron-photon interaction

Spontaneous emission in a two-level system (Fermi's golden rule)

$$P_{sp} = q^2 \frac{\pi\omega}{\epsilon_0 L^3} \left| \langle 2 | \hat{\mathbf{e}}_l \hat{\mathbf{r}} | 1 \rangle \right|^2 \delta(\hbar\omega = E_2 - E_1)$$

Dipolar matrix element

Further details are given in Lecture 14 of the fall semester

$\hat{\mathbf{e}}_l$ unit polarization vector of the electric field

The spontaneous emission rate is calculated over all the cavity modes

$$\Gamma_{sp} = \iiint P_{sp} d^3k \quad + \text{substitute } \epsilon_0 \rightarrow \epsilon_r \epsilon_0$$

Section 3.6 Rosencher-Vinter

$$\Gamma_{sp} = \frac{q^2 r_{12}^2 \omega^3 n_{op}}{3\pi c^3 \hbar \epsilon_0} = 1/\tau_{sp} \quad \tau_{sp} \text{ radiative lifetime}$$

First derivation: Weisskopf-Wigner theory 1930

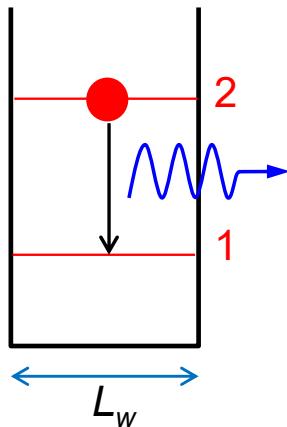
V. Weisskopf and E. Wigner, Z. Phys. **63**, 54 (1930) (> 1570 citations)

Spontaneous emission: case of discrete levels

Application:

Recombination lifetime in a quantum well with infinite barriers

1) Energy level



$$E_n = n^2 \frac{\hbar^2 \pi^2}{2m^* L_w^2}$$

Then,

$$\hbar\omega_{12} = E_2 - E_1 = 3 \frac{\hbar^2 \pi^2}{2m^* L_w^2}$$

2) Dipole element r_{12}

$$r_{12} = \langle \Psi_2(x) | x | \Psi_1(x) \rangle \quad \text{with} \quad \Psi_1(x) = \sqrt{\frac{2}{L_w}} \cos(\pi x / L_w) \quad \text{and} \quad \Psi_2(x) = \sqrt{\frac{2}{L_w}} \sin(2\pi x / L_w)$$

$$\text{Finally,} \quad r_{12} = \frac{2^4 L_w}{3^2 \pi^2} \quad \text{and} \quad r_{12}^2 = \frac{2^7 \hbar^2}{3^3 \pi^2 m^*} 1 / E_{12}$$

Spontaneous emission: case of discrete levels

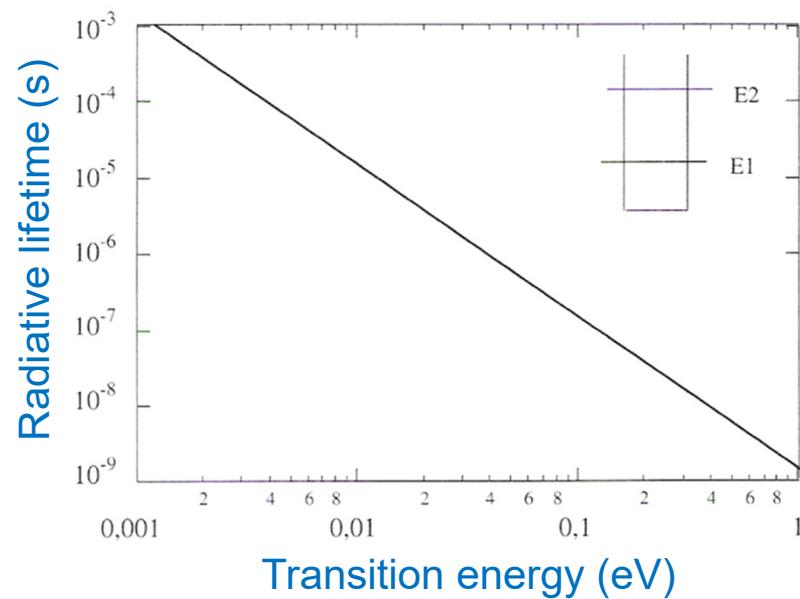
Radiative lifetime:

$$1/\tau_{sp} = \frac{q^2 r_{12}^2 \omega^3 n_{op}}{3\pi c^3 \hbar \epsilon_0}$$

Optical refractive index

$$\tau_{sp} = \frac{3^4 \pi^3 m^* c^3 \hbar^2 \epsilon_0}{2^7 q^2 n_{op}} \frac{1}{E_{12}^2}$$

Dipolar matrix element

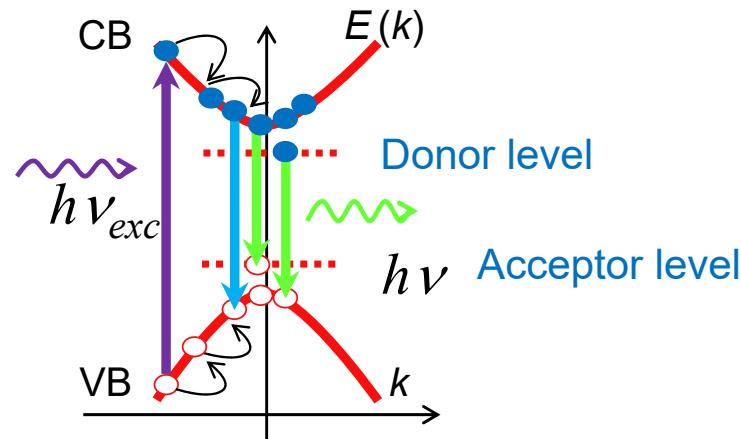


**Transition energies > 1 eV
⇒ radiative lifetime ~1 ns**

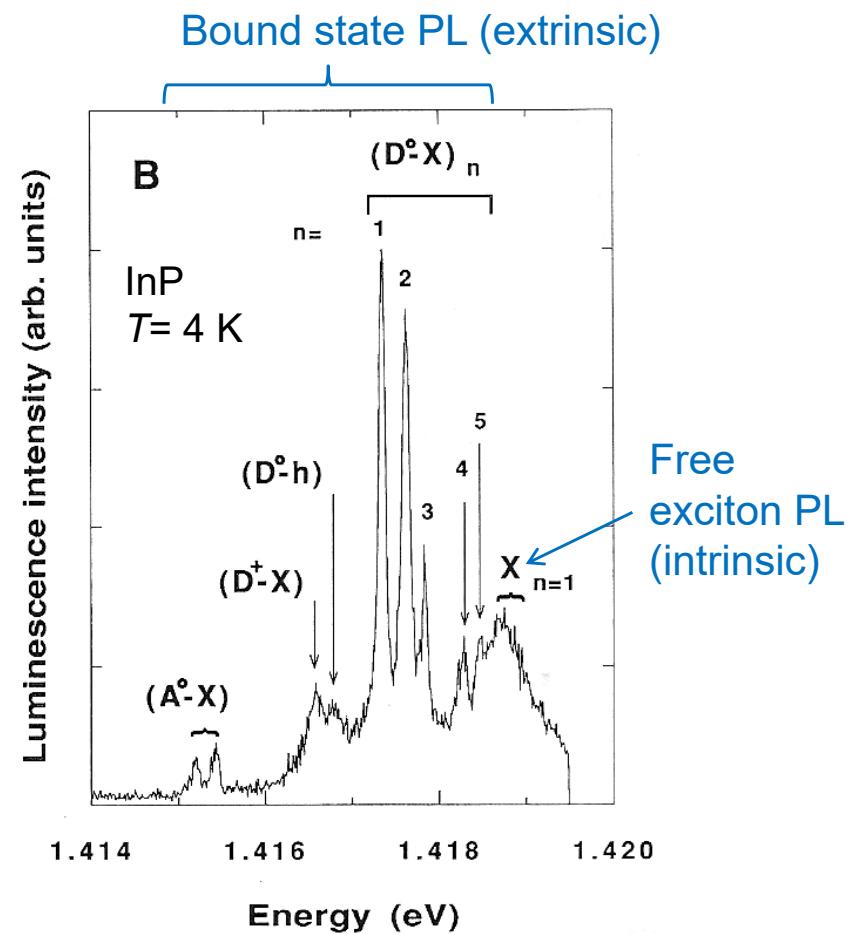
Intersubband optical transitions are expected to be slower than interband ones!

Spontaneous emission

Photoluminescence (case of bulk InP)

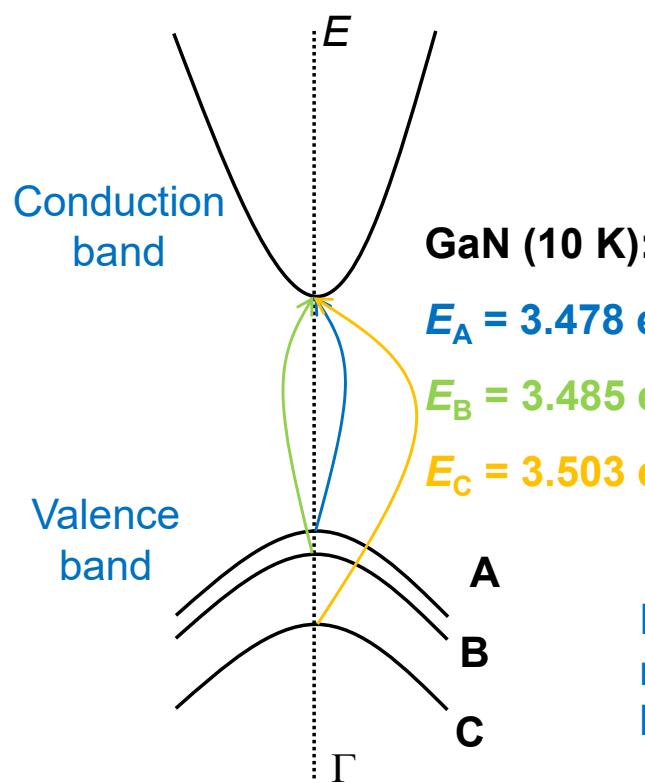


⇒ How can we *discriminate*
intrinsic PL from *extrinsic one*?

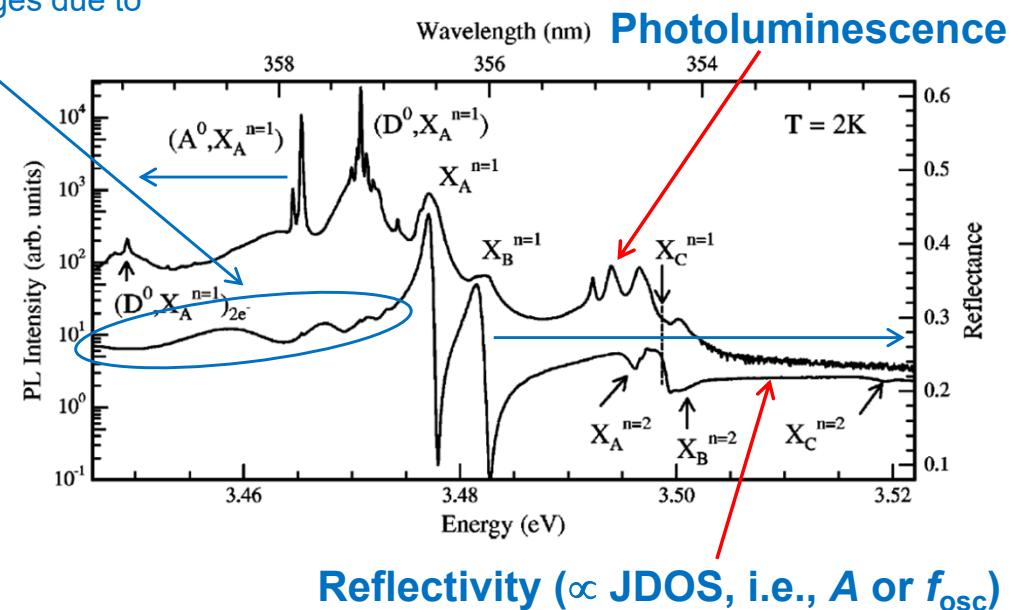


Spontaneous emission bulk samples

Photoluminescence and reflectivity (case of GaN)



Interference fringes due to cavity effect



$$R + T + A = 1$$

In thick samples $R \approx 1 - A$

Exciton binding energy can be determined from reflectivity spectra!

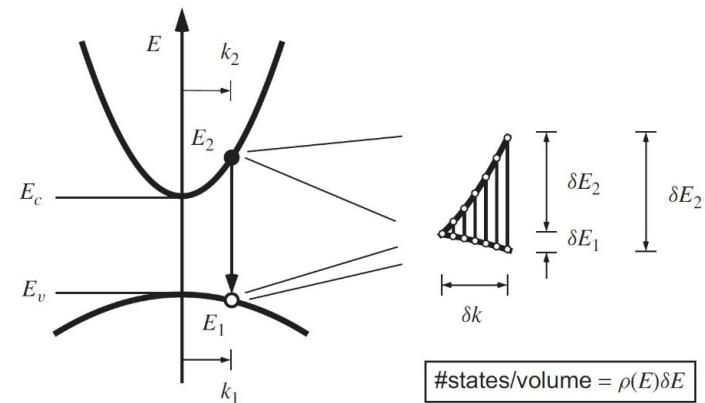
Joint density of states in semiconductors

$\rho_j(\omega)$ **Joint/reduced density of states** (3D case) \Rightarrow the number of transition pairs within δk is equal to the number of states in either the conduction or valence band

$$\rho_j(\omega) = \frac{1}{2\pi^2} \left(\frac{2m_r}{\hbar} \right)^{3/2} (\omega - E_g / \hbar)^{1/2}$$

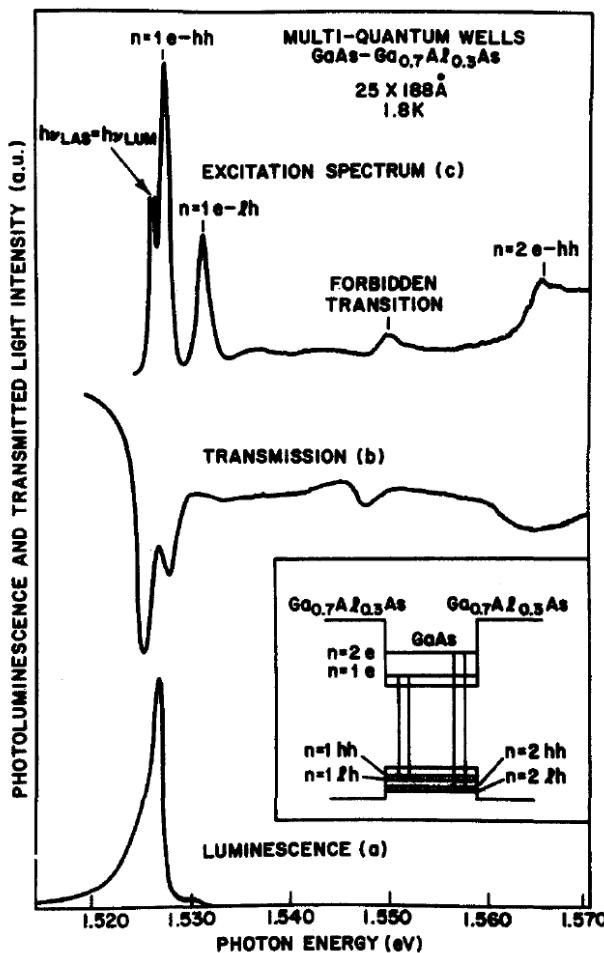
with $\frac{1}{m_r} = \frac{1}{m_e} + \frac{1}{m_h}$ and m_r is the reduced mass

Cf. chapter 4 Coldren-Corzine



Spontaneous emission quantum wells

Photoluminescence and transmission spectra (GaAs/AlGaAs QWs)



- Narrow PL linewidth (FWHM) at low temperature
- Disappearance of optical transitions due to bound excitations ascribed to:
 - smearing of the related luminescence bands (spread in the impurity binding energy due to confinement)¹
 - change in the symmetry of the impurity ground-state wavefunction \Rightarrow reduced oscillator strength

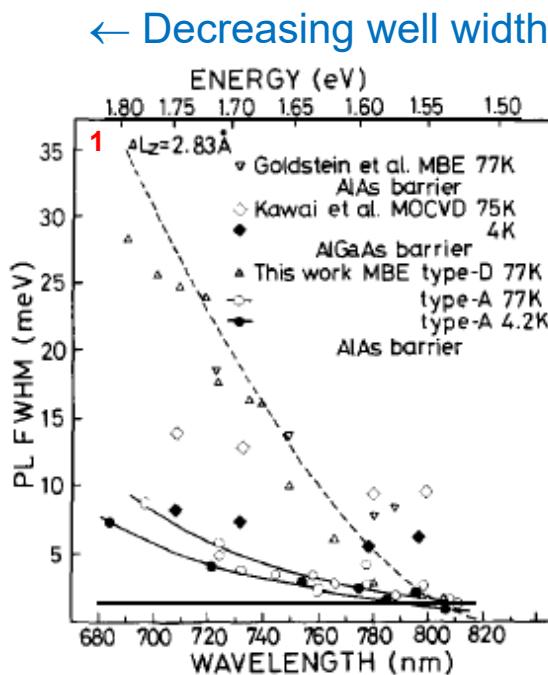
\Rightarrow QW PL spectra dominated by intrinsic radiative transitions in high quality QWs

PL spectra of QW heterostructures are usually much simpler than their bulk counterparts

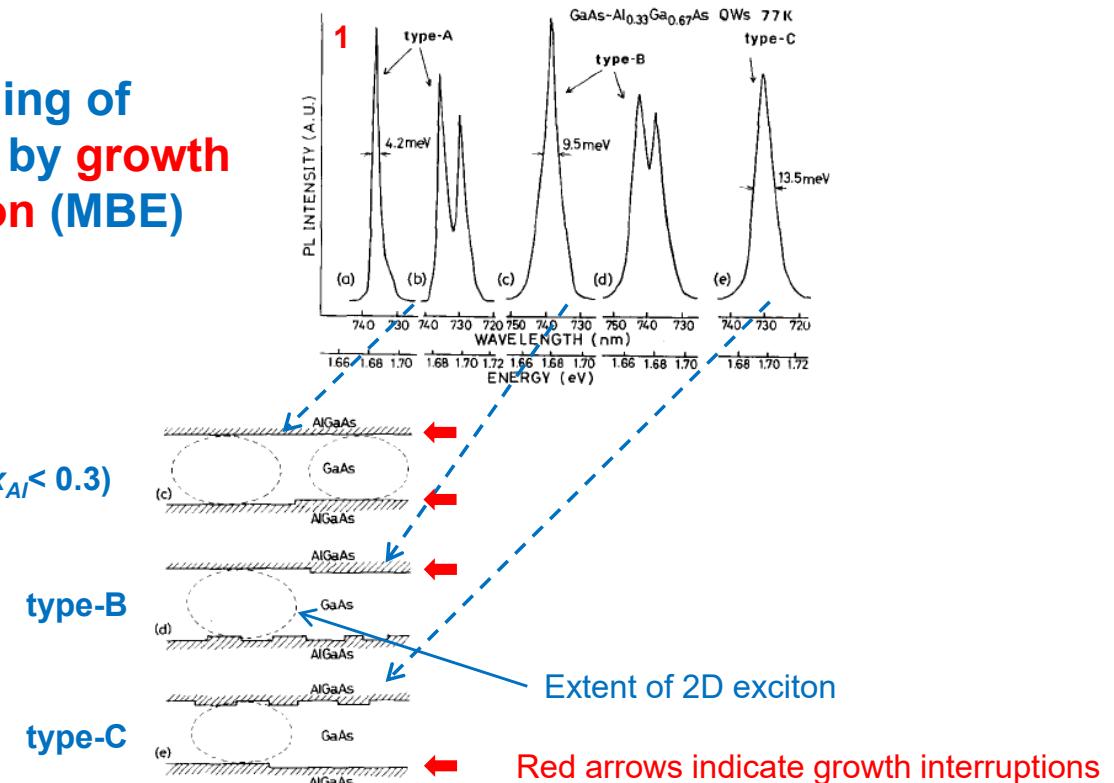
¹C. Weisbuch *et al.*, Solid State Commun. **37**, 219 (1981) (> 310 citations).

Excitons in quantum wells: role of interfaces

Various types of atomic-scale heterointerfaces lead to different PL lineshapes → impact of roughness and step intervals on excitons



Smoothening of interfaces by growth interruption (MBE)

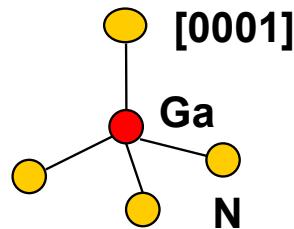


QW thickness fluctuations responsible for inhomogeneous broadening (= extrinsic broadening due to disorder)

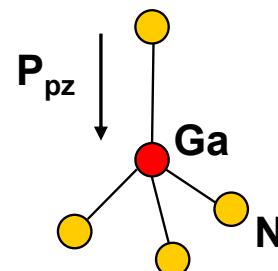
¹M. Tanaka and H. Sakaki, J. Cryst. Growth **81**, 153 (1987) (> 160 citations).

Quantum confined Stark effect (QCSE)

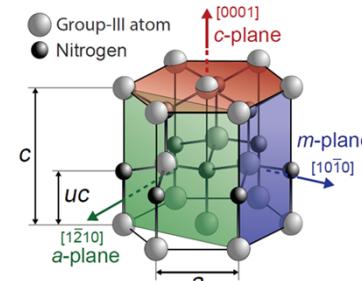
Piezoelectric (cubic & wurtzite)



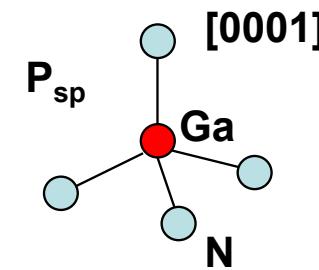
Equilibrium $P_{pz} = 0$



Strain (ϵ) $P_{pz} \neq 0$



Spontaneous (wurtzite)



Equilibrium $P_{sp} \neq 0$

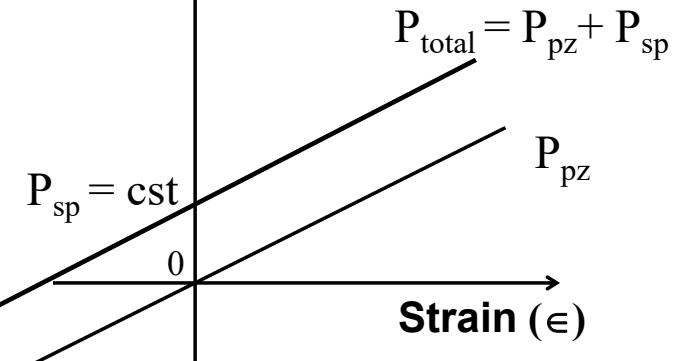
Keep in mind that polarization is a bulk vectorial quantity!

Macroscopic polarization:

Difference between the barycenters of positive and negative charges

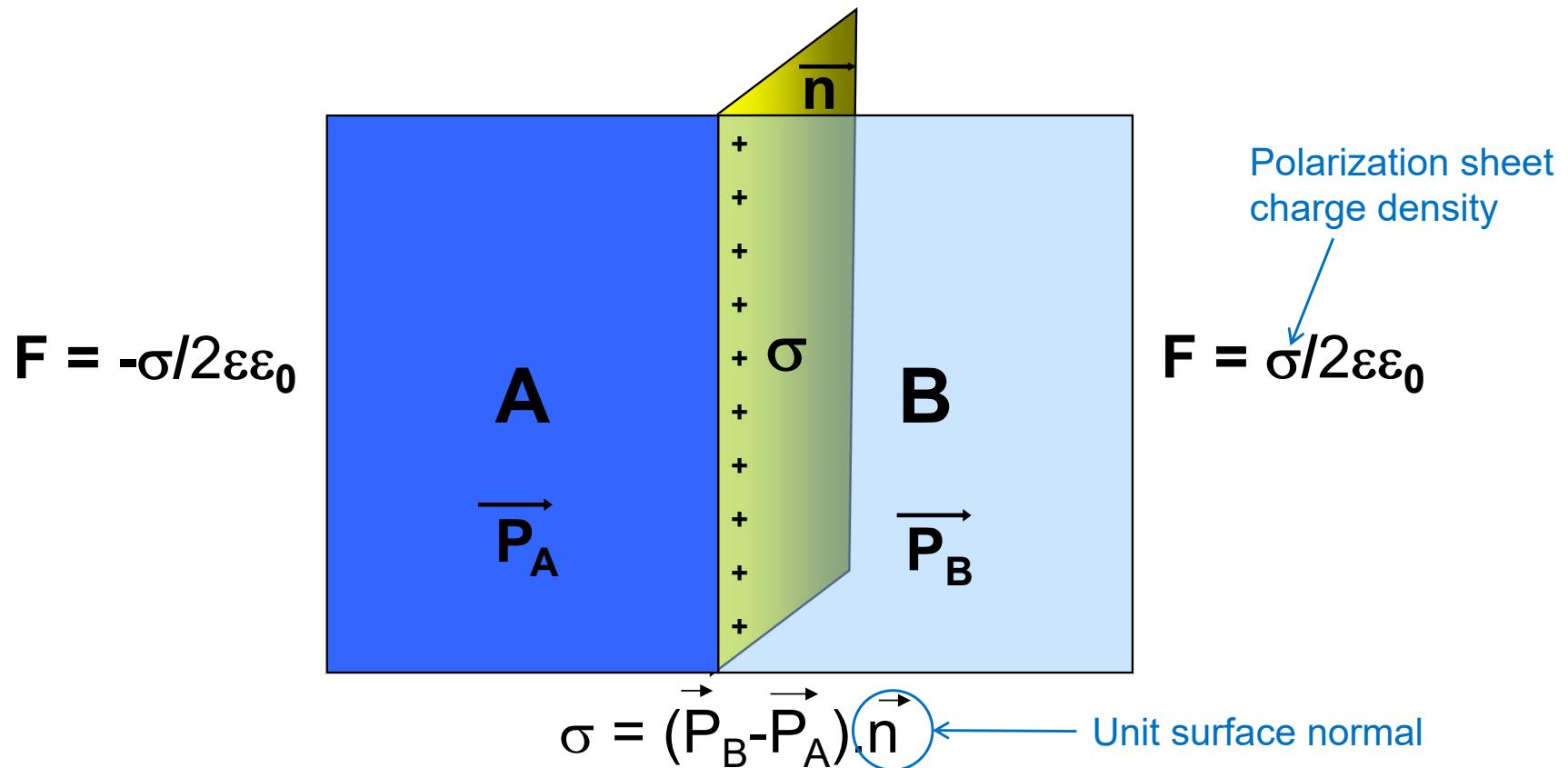
$$P_{\text{total}} = P_{\text{pz}} + P_{\text{sp}} // c\text{-axis}$$

Polarization



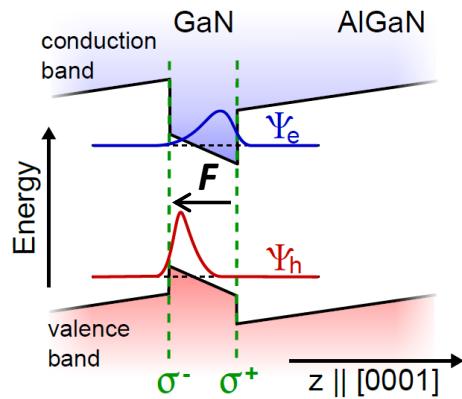
Quantum confined Stark effect

Electric field created by a surface charge

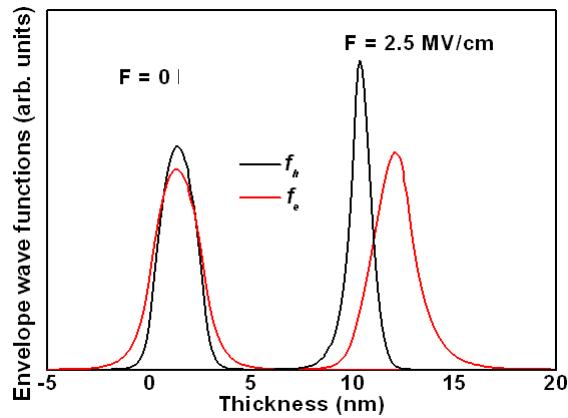


Spontaneous and piezoelectric polarization discontinuities at heterointerfaces

Quantum confined Stark effect

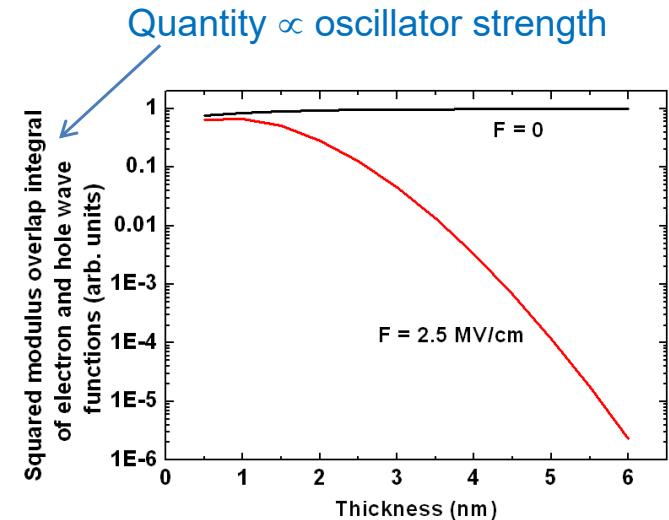


Triangular shape of confining potential, QCSE \Rightarrow
 (1) redshift of fundamental optical transition



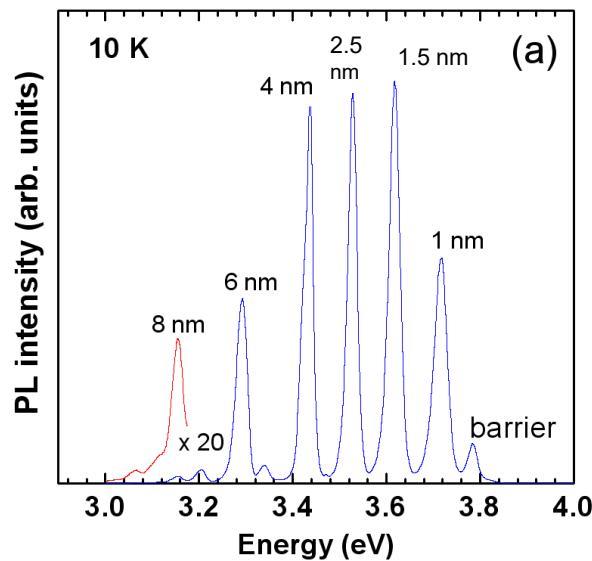
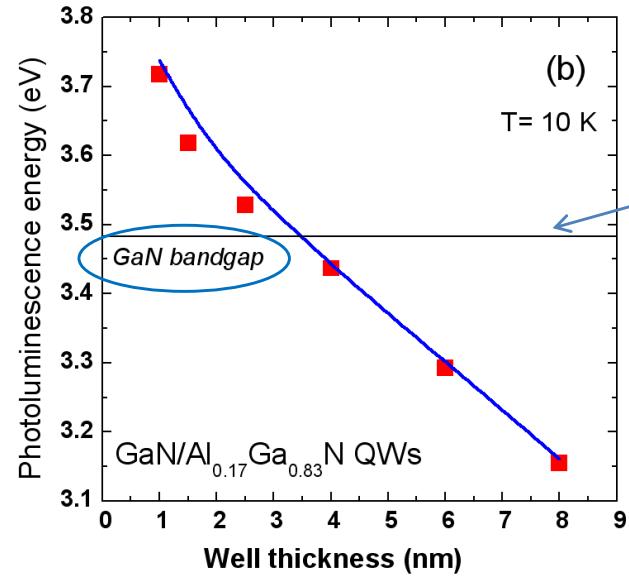
(2) spatial separation of electron and hole wavefunctions

$$\tau_{rad} = \frac{2\pi\epsilon_0 m_0 c^3}{n_{op} e^2 \omega_{cv}^2 f_{osc}}$$



(3) decrease in oscillator strength of optical transition and exciton binding energy and
 (4) increase in radiative lifetime¹

QCSE: experimental facts¹



Single GaN/AlGaN QWs

Rectangular quantum well limit
(≡ bulk SC bandgap)

Decrease in f_{osc} + increase in τ_{rad}

Bulk Bohr radius of GaN ~ 3 nm

Stark shift due to permanent dipole

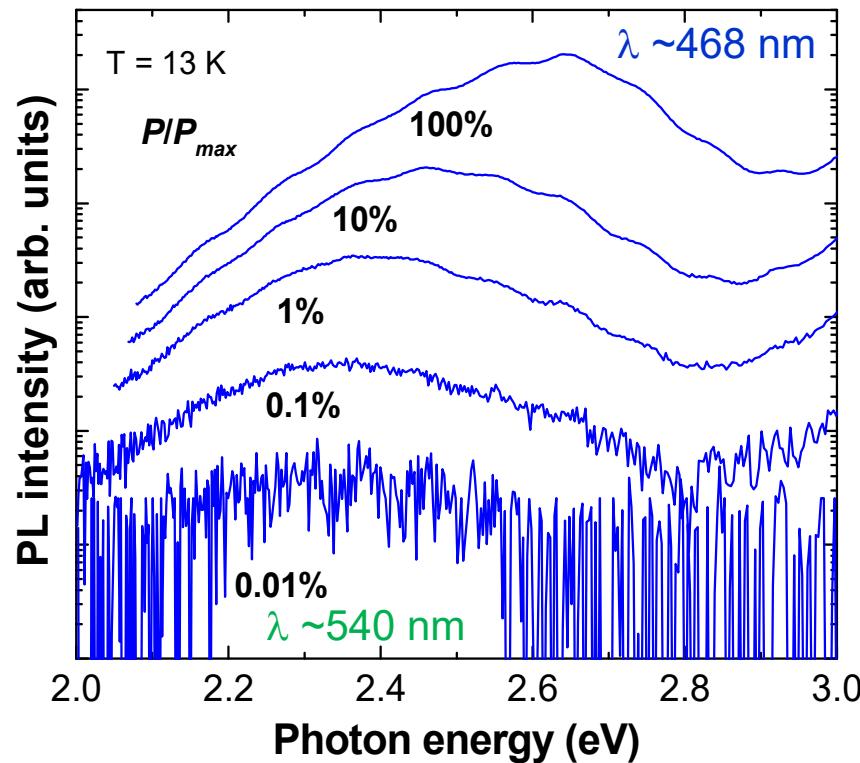
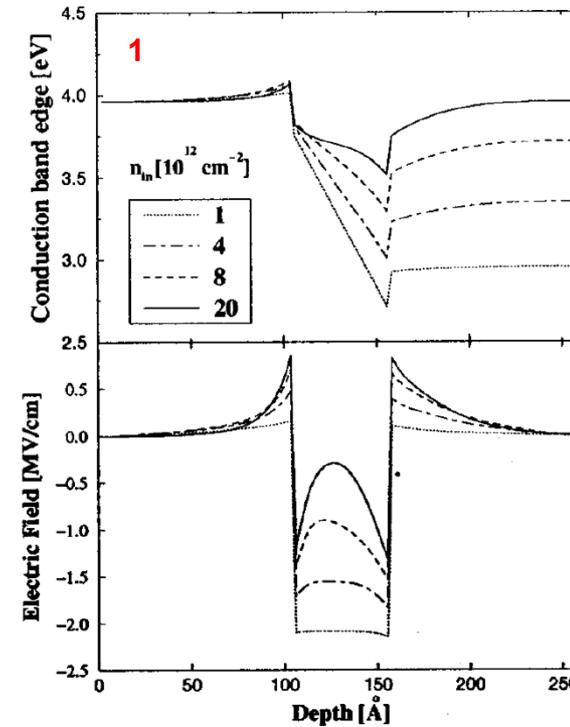
$$E_{e_1-hh_1} = E_{g,W} + e_1 + hh_1 - E_B - eFL_{QW}$$

QW transition energies occurring below the bandgap of GaN \Rightarrow QCSE

¹N. Grandjean *et al.*, J. Appl. Phys. **86**, 3714 (1999) (> 260 citations).

Electric field screening

Electric field screening by photo-generated free carriers

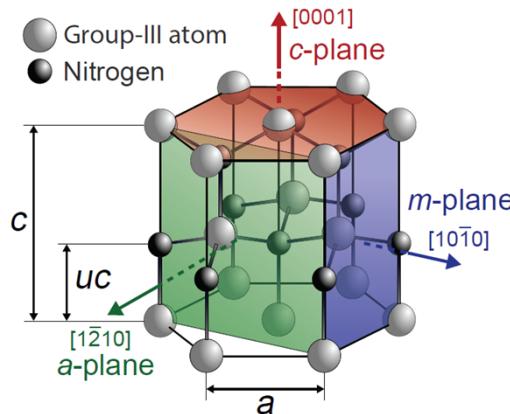
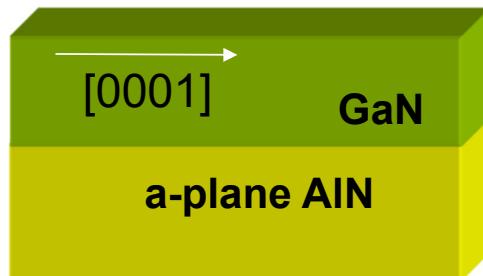


Self-consistent Schrödinger-Poisson calculations

$$\frac{d}{dz} \left[\epsilon_0 \epsilon_r \frac{d}{dz} V(z) \right] = -e \left[-n_{3D}(z) + p_{3D}(z) - n_{2D,i}(z) \right]$$

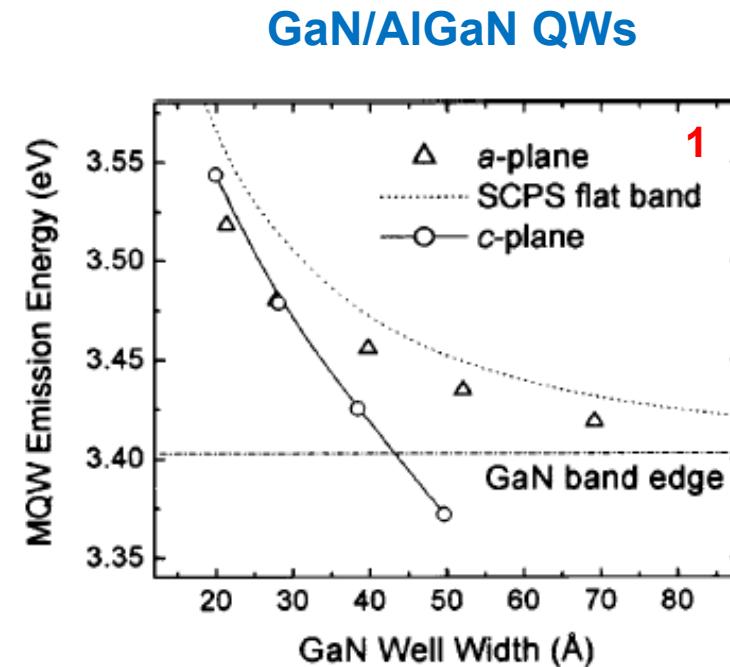
¹V. Fiorentini *et al.*, Phys. Rev. B **60**, 8849 (1999) (*> 500* citations).

Non-polar quantum wells



Growth on non-polar substrates \Rightarrow macroscopic polarization // QW plane \Rightarrow no fixed charge plane

\Rightarrow no built-in polarization field in QWs



¹Craven *et al.*, APL 84, 496 (2004) (> 120 citations).

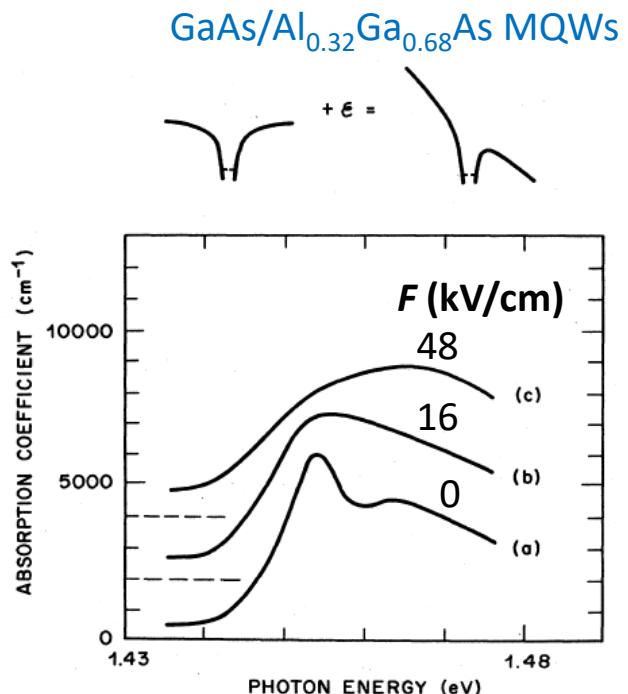
The transverse Stark effect in 2D systems¹

Total energy for a carrier External E -field // QW plane

$$E = E_x + E_y + E_z = \frac{p_x^2}{2m^*} + eFx + \frac{p_y^2}{2m^*} + \frac{p_z^2}{2m^*} + V_b H \left(z^2 - \frac{L^2}{4} \right)$$

Allowed classical motion such that $p_x^2 \geq 0$
 $\Rightarrow x$ motion limited to $x < \frac{1}{eF} E_x$

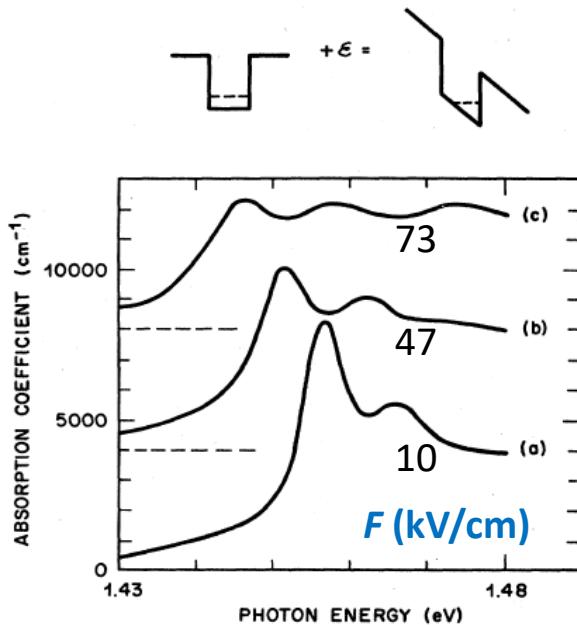
For an exciton in a perfect 2D system, at $F = 0$ the ground state is bound by $4Ry^*$. If the potential energy difference over one Bohr radius ($0.5eFa_B$) $\sim 4Ry^*$, the relative motion becomes unbound on the negative x side (\Leftrightarrow critical field in bulk materials that ionizes the exciton (Franz-Keldysh effect $F_c \sim \frac{Ry^*}{ea_B}$)).
Quasi-2D excitons more tightly bound than bulk ones
 $\Rightarrow F_c$ increased by a factor 2-4!



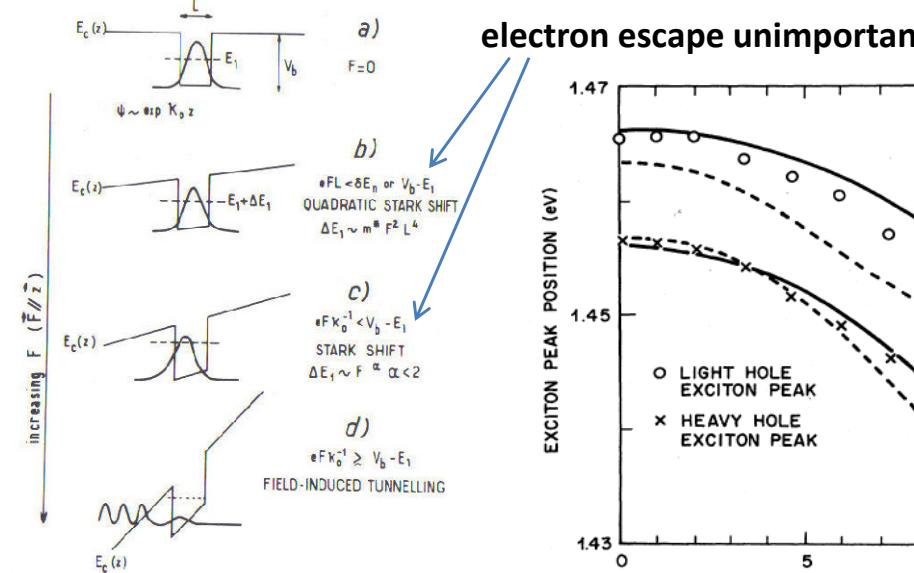
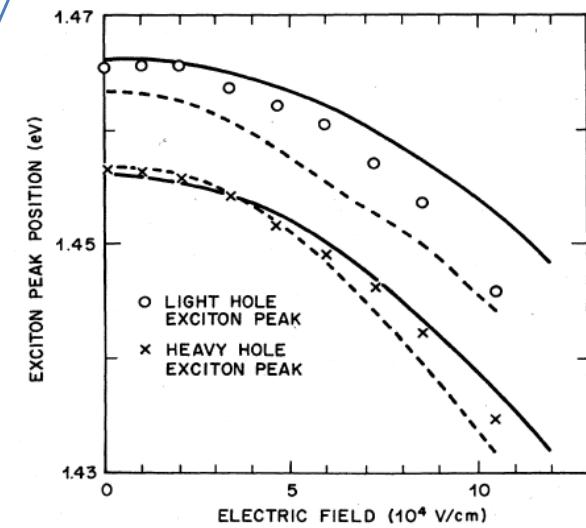
¹D. A. B. Miller *et al.*, Phys. Rev. B **32**, 1043 (1985) (> 1830 citations).

QCSE in non-polar quantum wells¹

Appearance of a finite dipole between electron and hole $D = |e|(z_h - z_e)$ (can be $> L_{QW}$)
 Exciton dissociation considerably hindered by CB and VB potential barriers



GaAs/Al_{0.32}Ga_{0.68}As MQWs in a *p-i-n* junction



$(\kappa_0)^{-1}$: characteristic penetration length of the ground CB state in the barrier at zero field

¹D. A. B. Miller *et al.*, Phys. Rev. B **32**, 1043 (1985) ([> 1830 citations](#)).