Lecture 4 —12/03/2025

Quantum nanostructures
- Spontaneous emission: bulk vs quantum wells

- Quantum confined Stark effect ~ GaN AlGaN
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Spontaneous emission

Photoluminescence

Fast intraband relaxation time due to

2
\ the efficient electron-phonon interaction
NN

“hot” carriers (electrons and holes) release their
kinetic energy via LO and acoustic phonon emission
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Electron-photon interaction

Spontaneous emission in a two-level system (Fermi’s golden rule)

L Dipolar matrix element
2

T Further details are given in Lecture 14 of the
P = 2 ( ’ 5 h = E — E
s =4 gL’ (m (ho=FE, - E,) fall semester

g unit polarization vector of the electric field

The spontaneous emission rate is calculated over all the cavity modes

L', = ”J. Pspd3k + substitute &, > &,¢,

7 9 3 Section 3.6 Rosencher-Vinter
q 1@ 1, o
Fsp = 3 =1/t sp 7,p radiative lifetime
3rmche,

First derivation: Weisskopf-Wigner theory 1930

V. Weisskopf and E. Wigner, Z. Phys. 63, 54 (1930) (> 1570 citations)
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Spontaneous emission: case of discrete levels

Application:
Recombination lifetime in a quantum well with infinite barriers

1) Energy level

hr?
E =n’ -
. 2 " 2m L%V
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2) Dipole element r,,

732:<\Pz(x)|x|\111(x)> with W, (x) = Licos(ﬂx/Lw) and W,(x)=

w

24LW 5 27 h?
3t and 42:337z2m*

Finally, 7, = 1/E,
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Spontaneous emission: case of discrete levels

2.2 3
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Radiative lifetime: 1/t P Optical refractive index

4 * 322
3 rm’chle, 1

T = Dipolar matrix element
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= Transition energies > 1 eV

_qz’ => radiative lifetime ~1 ns
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o | Intersubband optical transitions are

it e Ty expected to be slower than interband
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Spontaneous emission

Photoluminescence (case of bulk InP)

Donor level

Jh v Acceptor level

k

N
7

— How can we discriminate
intrinsic PL from extrinsic one?
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Luminescence intensity (arb. units)

Bound state PL (extrinsic)
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Spontaneous emission bulk samples

Photoluminescence and reflectivity (case of GaN)

Interference fringes due to .
cavity effect wavelength am) Photoluminescence
358 356 354 /
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Conduction E .
band GaN (10 K): § 04 g
E,=3.478 eV E 03 %
i = 02
10" . . N N , N N N \ , . 101
: 3.46 3.48 3.50 3.52
Valence - Energy (eV) /
band /\\ A Reflectivity (< JDOS, i.e., A or f._.)
Expected values in R+T+A=1
/\ B relaxed (strain-free) a
L bulk GaN In thick samples| R = 1-A

Exciton binding energy can be determined from
reflectivity spectra!
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Joint density of states in semiconductors

plo) Joint/reduced density of states (3D case) = the number of transition pairs within 8k is equal
to the number of states in either the conduction or valence band

3/2
1 (2m 1 1 1 dm. is th
(W) = r w—E | R)"? ith — —— 4+ anam.istne
'OJ( ) ( h j ( & ) W m m. m, reduced mass

r e h

Cf. chapter 4 Coldren-Corzine

| #states/volume = p(E)SE |
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Spontaneous emission quantum wells

Photoluminescence and transmission spectra (GaAs/AlGaAs QWs)
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* Narrow PL linewidth (FWHM) at low temperature

» Disappearance of optical transitions due to bound excitations
ascribed to:
- smearing of the related luminescence bands (spread in
the impurity binding energy due to confinement)’
- change in the symmetry of the impurity ground-state
wavefunction = reduced oscillator strength

= QW PL spectra dominated by instrinsic radiative transitions in
high quality QWs

PL spectra of QW heterostructures are usually much simpler
than their bulk counterparts

1C. Weisbuch et al., Solid State Commun. 37, 219 (1981) (> 310 citations).



Excitons in quantum wells: role of interfaces

Various types of atomic-scale heterointerfaces lead to different PL lineshapes — impact of roughness
and step intervals on excitons
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for inhomogeneous broadening (=
extrinsic broadening due to disorder)

. . . . M. Tanaka and H. Sakaki, J. Cryst. Growth 81, 153 (1987) (> 160 citations).
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Quantum confined Stark effect (QCSE)

Piezoelectric (cubic & wurtzite)
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© Group-lll atom Tc-plane
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Keep in mind that polarization is a bulk vectorial quantity!

Spontaneous (wurtzite)
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N
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Macroscopic polarization:

Difference between the
barycenters of positive and
negative charges

Piotar = Ppz ¥ Psp // C-axis
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Quantum confined Stark effect

Electric field created by a surface charge

Polarization sheet
charge density

= -0/2¢¢, B F = o/2¢¢,

o - (PB'PA)W Unit surface normal

Spontaneous and piezoelectric polarization discontinuities at heterointerfaces
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Quantum confined Stark effect

Quantity oc oscillator strength
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QCSE: experimental facts’

PL intensity (arb. units)
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Single GaN/AIGaN QWs

1__Rectangular quantum well limit

(= bulk SC bandgap)
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| GaN/Al Ga, . .N QWs

0 1 2 3 4 5 6 7 8 9

Well thickness (nm)

Stark shift due to permanent dipole

Bulk Bohr radius of GaN ~3 nm

QW transition energies occurring below the bandgap of GaN = QCSE

Physics of photonic semiconductor devices

'N. Grandjean et al., J. Appl. Phys. 86, 3714 (1999) (> 260 citations).
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Electric field screening

Electric field screening by photo-generated free carriers
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. . . . V. Fi ini l., Phys. Rev. B 49 (1 > itati .
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Non-polar quantum wells
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1Craven et al., APL 84, 496 (2004) (> 120 citations).
Growth on non-polar substrates = macroscopic

polarization // QW plane = no fixed charge plane

—> no built-in polarization field in QWs
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The transverse Stark effect in 2D systems'

Total energy for a carrier External E-field // QW plane

2 2 2 2

L

E=E +E,+E, =P verx+ D Pe sy 2 b
2m 2m  2m 4

Allowed classical motion such that p > > 0

e 1
= x motion limitedto x < —FE |

eF

For an exciton in a perfect 2D system, at F = 0 the ground
state is bound by 4Ry”". If the potential energy difference over
one Bohr radius (0.5eFag) ~ 4Ry", the relative motion
becomes unbound on the negative x side (< critical field in
bulk ma*terials that ionizes the exciton (Franz-Keldysh effect
Ry
Fc - ))
ed,
Quasi-2D excitons more tightly bound than bulk ones

= F_increased by a factor 2-4!
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ABSORPTION COEFFICIENT (em~1)

GaAs/Al, 3,Gay ggAs MQWSs
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1D. A. B. Miller et al., Phys. Rev. B 32, 1043 (1985) (> 1830 citations).
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QCSE in non-polar quantum wells’

Appearance of a finite dipole between electron and hole D = |e|(z,-z,) (can be > L)
Exciton dissociation considerably hindered by CB and VB potential barriers

GaAs/Al, ;,Ga, gAs MQWs in a p-i-n junction
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D. A. B. Miller et al., Phys. Rev. B 32, 1043 (1985) (> 1830 citations).
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